DSN Progress Report 42-41

July and August 1977

The DSN Programming System

W. D. Hodgson
TDA Engineering Section

This article describes the DSN Programming System. The Programming System
provides the DSN with implementation tools and practices for producing DSN software.
This article provides a general description of the System, as well as its key characteristics,

status, plans, and expected benefits.

l. Introduction

The DSN Programming System is a unified body of prac-
tices and implementation tools for producing DSN software on
time, within budget, conforming correctly to functional
requirements, and of predictable and low life-cycle cost. The
system incorporates software methodology, software standard
practices, language and data base standards, including standard
languages, implementation aids, and management aids.

The DSN Programming System is needed because:
(1) DSN service continues to require more software

(a) End user requirements continue to increase, both in
quantity and quality.

(b) Network functions need to be computerized to sta-
bilize maintenance and operating costs.

(2) DSN software costs are continuing to be an increasing
fraction of the DSN budget. Transferred software in
the DSN is increasing at 15% per year.

(3) The DSN customer, the end user project, requires that
DSN software be delivered on time and with full nego-

tiated capability. The Programming System provides
assurances, as well as the means for the DSN to meet
the end user requirements.

ll. Key Characteristics

The DSN Programming System includes the production and
maintenance of DSN Software Standard Practice documents,
the implementation of DSN standard programming languages
according to pre-defined functional requirements, and the
implementation and evaluation of the initial concept of the
distributed DSN data base (in the Configuration Control and
Audit Assembly), as well as software implementation aids and
management aids.

There are six complete DSN Standard Practice documents’
for software that cover implementation including documenta-
tion; Software Implementation Guidelines and Practices, Prep-
aration of Software Requirements Documents (SRD), Prepara-
tion of Software Definition Documents (SDD), Preparation of
Software Specification Documents (SSD), Preparation of Soft-
ware Operators Manuals (SOM), and Preparation of Software
Test and Transfer Documents (STT).

! These documents are currently available on request from the author.

A seventh Standard Practice is currently in development
that will cover the DSN data base, including implementation
guidelines and practices.

The Software Implementation Guidelines and Practices
describe the overall Tracking and Data Acquisition (TDA)
software methodology, policy, and software management plan.
The other Standard Practices provide supporting detail as
summarized below.

The Standard Practices on Software Requirements Docu-
ments and Software Definition Documents cover the early
activities of requirements identification and software architec-
tural design. These are the conceptual phases where decisions
made during these formative stages tend to have profound
effects on the overall costs, commitments, and the general
approach. The SRD and SDD deemphasize formality and
permanency. The SDD describes the software architectural
design, which permits a +10% accurate estimate to be made of
the cost and schedule of the remaining implementation, which
is the program construction. The architectural design can, in
fact, be the basis for a bid by an outside contractor for a fixed
price implementation. Timing is critical and early reviews
facilitate redirection, if needed. Also, informal documentation
during these phases facilitates changes as may be needed prior
to final approval. The documents covering the preparation of
SSDs, SOMs, and STTs require that they be produced
concurrently with the program construction and testing
activities. They document the true “as-built” and “as-tested”
computer program and are used to operate and maintain the
transferred (delivered) program. These documents tend to be
more formal and are updated, as needed throughout the useful
life of the software. The standard practice on data bases is to
provide guidelines for standardizing and implementing the
operational DSN Data Base. The DSN Data Base includes the
data throughout the DSN in continual use for ongoing
business, operations, and commitments.

The standard programming languages reduce implementa-
tion and sustaining costs because they are both standard and
high-level languages. They permit implementers to concentrate
on TDA design problems, not on machine details. Further-
more, having standard languages preserves implementer and
manager skills and furnishes immunity of DSN applications
programs to hardware and operating system changes. The
machine-independent design principles being applied reduce
the costs of providing the standard languages on various
computers the DSN uses. Two standard languages have been
identified: a non-real-time language for Operations manage-
ment use, augmented by a File Editor for data base modifica-
tion and update, and a real-time language.

The non-real-time language machine-independent design is
being completed and implemented on the PDP-10, on the

Univac 1108, and on the DSN standard minicomputer (Ref.
1). The File Editor functional requirements are being defined
in preparation for the machine-independent design and subse-
quent implementation in the Configuration Control and Audit
Assembly (Ref. 2). In later years, the real-time DSN standard
language will be similarly implemented, initially for the DSN
standard minicomputer, and then for DSN Control and Com-
putation Modules (CCMs), the DSN standard microprocessor
components.

The implementation aids are to be selected and then
implemented, based on the methodology research coordinated
under the DSN Advanced Systems program and on the
experiences of the Mark III DSN Data Subsystem Implementa-
tion Project (MDS). These may include automated finished
graphics, computer-based implementation document construc-
tion, a program design medium, and perhaps others. The
Software Standard Practices will be revised to incorporate the
proper use of these aids as they are transferred to Operations,
acting in unison with the methodology and languages.

The DSN Programming System is organized in the following
structure. (Figure 1 also gives a graphic representation of the
same information for clarity.)

(1) Methodology research
(2) DSN non-real time language
(a) MBASIC? machine independent design (MID)
(b) MBASIC? MID extensions (MIDX)
{c) MBASIC? batch compiler
(d) MBASIC? reference manual
(e) MBASIC? implementations
(f) File editor
(3) DSN real-time standard language
(a) Design
(b) Implementation
(4) Data base implementation and standards
(5) Implementation aids and management aids
(6) Software standard practices
(a) Guidelines and practices
(b) Software Requirements Document preparation
(c) Software Definition Document preparation
(d) Software Specification Document preparation

(e) Operators Manual preparation

2 A trademark of the California Institute of Technology.

(f) Test and Transfer Document preparation

(g) DSN data base implementation guidelines and
practices

lil. Schedule Overview

The DSN Programming System schedule of major deliver-
able milestones is described in the following paragraphs.

The first six software standard practices have been com-
pleted since early FY77. The seventh (Data Base Implementa-
tion Guidelines and Practices) will be complete in early FY78.

The Machine Independent Design (MID) of the non-real-
time standard language is also complete with one implementa-
tion (on the DEC System-10 computer) transferred to opera-
tions and in use.

The first volume of the software methodology textbook
(Ref. 3) has been published and is available from (among other
sources) Prentice-Hall. The second volume is drafted and will
be published in early FY78.

It is planned that the non-real-time standard language
(MBASIC) interpreter and batch compiler is to be complete
and operational on three different computers (MODCOMP 1I,
Univac 1108, and the DEC System-10) in late FY80, followed
shortly thereafter by a standard file editor implementation on
the same three machines:.

The standard real-time programming language will be com-
plete in FY80 for the DSN standard minicomputer, followed

one year later by implementation for the DSN standard micro-
processor components (CCMs).

An overview of the Programming System schedule is shown
in Fig. 2.

IV. Benefits

Many benefits are expected or are currently being realized
because of the application of the Programming System.
Table 1 shows in what way each element of the Programming
System provides benefits. Some of the benefits can only be
predicted based on current software literature (since the Pro-
gramming System tool is not yet available) but many have
actually been measured. For example, for the implementation
of the MBASIC language (itself a test bed for the Programming
System), costs can be directly compared to the costs of a
previous implementation which did not use the Programming
System tools. The comparison in this case showed that a
machine-independent design was obtained at no additional
cost over the old way of machine-dependent design.

V. Summary

All the elements of the DSN Programming System have
been defined. Those elements that exist now are being used in
Implementation and Operations. The effects on software life-
cycle costs and productivity are beginning to be understood.
The transfer of all the elements of the Programming System
to operations is planned to be complete in 1982.

References

1. Tausworthe, R. C., “Software Production Methodology Test Bed Project,” Deep Space
Network Progress Report 42-33, pp. 186—191, Jet Propulsion Laboratory, Pasadena,

Calif., June 15, 1976.

2. Bryan, A.I., “A Distributed Data Base Management Capability for the Deep Space
Network,” Deep Space Progress Report 42-33, pp. 3236, Jet Propulsion Laboratory,

Pasadena, Calif., June 15, 1976.

3. Tausworthe, R. C., “Standardized Development of Computer Software, Vol. I — Meth-
ods; Vol. II — Standards,” Jet Propulsion Laboratory, Pasadena, Calif., July 1976.

Table 1. Programming System benefits

Elements
Standard practices S tandard NRT .Standard RT Standard Implementa- Data base . Machine-
Benefits interpreter and interpreter and . . . independent
and methodology . X file editor tion aids standards .
compiler compiler design

Software reliability b a b b a b
Accurate scheduling b a b b
Accurate costing b a b b
Reduced implementation costs

(program development) a a b b b a
Reduced operations costs

(OPS people time) a b b b b
Reduced sustaining costs (show

1108 vs PDP, keeping within

specs) b b b a a
ECO engineering (improvements

to software) a b a a a
Lower computer production

costs (CPU) c c
Reduced training/retraining

costs a a b b b b b
No new file editors b
Better management and

implementor communication b b b a a a a
Reduced test time b a b a a a a
Application software insulated

from O.S. changes a b
Same engineer for multiple

tasks b b a a a
Portable software b b b a b b

APredicted information only

bSome empirical evidence exists, from both DSN and external data sources

CBenefits only if interpreter used for development activities and compiler for production

wasAs Bujwwesboid Nsa 'L ‘b1

Il dWODQOW
80t 1

NOILVINIWIIdWI M
NOIS3d
SINIWIINDOIY "DONN4

¥O 1143 3714

_ S3INIT3AIND 3SvE vivad _l

1T dWODAOW
Ol W31SASD3a

_‘ YIISNVIL ANV 1S3L _I 80LL B

SNOLLVINIWITIWI

?O_._.,Qx,qmwxn_ TVOANYW mmOT

NOI1S3Q ¥3UIWOD HOLvE _I

salv
— NOILY¥Vd3¥d ass T INIWIOVNYW -
: HOLve
NOILVIN3IWNJ04Q| | 11aNV ANy TO¥INOD | O¥DIW NSa 2 “1OA
— NOI11v¥vdIdd ads T Q3ZI¥LNdWOD NOILYINOIINOD INIWNSG L L “10A
SNOILVINIWITdWI IWANYW IDONTUIAIY |
ﬁ NOILV3VdIdd Q¥s ;l _ SDIHAVYD T _ ADOT10AOH 1AW _n SNOISN31X3
noLve WINIWVANNS Z O
JAILINANILNI | NOISId 1 "10A
_MmU_hU(ME INV mmZ_._wQ_DO*I _ SAIVANVILS —l — SQ¥VANVIS —I NOISIa INIANIJIANI INIHOVW S1X31 SAOH1IW
— SIDILOVId 1S IAVYMLIOS _ _82 zo:Szmzmiz__ _ 35v8 vivd ; _ IOVNONYT IWIL-Tv3Y _ _ IOVNONYT IWIL-TVII-NON _ _ HO¥VISIY \69000_._5&

_ _ _ _ | |
|

_ WI1SAS ONIWWVIOOYd NSd _

IFY77I Fy 78]FY79 I FY 80 l Fy 81 l Fy 82 l
ICY77 I Cy 78 | Cy 79 I Cy 80] Cy 81 l Cy 82 ‘

PROGRAMMING SYSTEM 1 23 4 5 [} 789 10 11
MAJOR MILESTONES

1 COMPLETION OF SiX SOFTWARE STANDARD PRACTICES

2 COMPLETE MACHINE INDEPENDENT DESIGN OF NON-REAL-TIME STANDARD LANGUAGE (MBASIC®)
3 COMPLETION OF SOFTWARE METHODOLOGY TEXTBOOK, VOL. 11 (VOL. 1 COMPLETED IN FY 77)

4 COMPLETION OF DATA BASE STANDARD PRACTICE

5 REAL-TIME LANGUAGE SPECIFICATION

6 FIRST BATCH COMPILER OPERATIONAL

7 FULL IMPLEMENTATION OF THE MBASIC LANGUAGE (BATCH AND INTERPRETER) ON THREE DSN COMPUTERS
8 FULL IMPLEMENTATION OF A STANDARD FILE EDITOR ON TWO DSN COMPUTERS

9 IMPLEMENTATION OF REAL TIME STANDARD LANGUAGE ON DSN STANDARD MINICOMPUTER
10 IMPLEMENTATION OF REAL TIME STANDARD LANGUAGE ON DSN STANDARD CCMs
11 COMPLETION OF PROGRAMMING SYSTEM IMPLEMENTAT!ONb

© TRADEMARK OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY
b SUBSEQUENT IMPLEMENTATIONS CONDUCTED AS PART OF SPECIFIC COMPUTER MEASUREMENTS

Fig. 2. DSN Programming System overview

